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Introduction
To obtain unbiased population estimates of student proficiency, TIMSS uses probability sampling 
techniques to select students from the national fourth- and eighth-grade student populations 
and uses matrix-sampling assessment designs to target individual students with a subset of the 
complete pool of assessment items. This approach keeps the response burden on school systems 
and students to a minimum, but at the cost of some variance or uncertainty in the reported 
statistics, such as the means and percentages computed to estimate population parameters.

To quantify this uncertainty, each statistic reported in TIMSS International Results reports is 
accompanied by an estimate of its standard error. Statistics based on differences between two 
estimated results also have standard errors, which are used to calculate confidence intervals 
or to perform tests of statistical significance. For statistics reporting student achievement 
based on plausible values, standard errors are calculated based on two estimated variance 
components. The first is referred to as sampling variance and reflects the uncertainty due to 
generalizing from a student sample to the entire student population from which it was drawn. 
The second is known as imputation variance and reflects uncertainty due to inferring students’ 
achievement estimates from their observed performance on a set of achievement items and 
other achievement-related information. This imputation variance reflects the posterior variance 
of the achievement estimates given all available information used in the achievement imputation 
model described in Chapter 11. For reported statistics that are not based on plausible values, 
the estimates of standard errors are based entirely on sampling variance.

Estimating Sampling Variance
TIMSS uses probability sampling to derive achievement results from national samples of 
students. Because many such samples are possible but only one sample is drawn, some 
uncertainty about how well the sample represents the population is expected. The uncertainty 
caused by sampling students from a target population, known as sampling variance, can be 
estimated from the data of the one sample drawn.

https://doi.org/10.6017/lse.tpisc.timss.rs6950
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Whereas estimating the sampling variance from simple random samples is a relatively simple 
task, estimating the sampling variance from a complex sample design like the one used for 
TIMSS is a more challenging endeavor. A common way to estimate the sampling variance 
in these multistage cluster sampling designs is through resampling schemes (Efron, 1982) 
such as the balanced repeated replication (BRR) and jackknife repeated replication (JRR) 
techniques (Johnson & Rust, 1992; Quenouille, 1949; Tukey, 1958; Wolter, 1985). TIMSS uses a 
variation of JRR to estimate sampling variances. JRR was chosen because it is computationally 
straightforward and provides approximately unbiased estimates of the sampling variance of 
means, totals, and percentages.

At the core of the JRR technique is the repeated resampling from the observed sample 
under identical sample design conditions. In the context of TIMSS, this entails grouping primary 
sampling units into sampling zones based on the TIMSS sample design and conducting 
repeated draws of subsamples from these zones according to a predetermined scheme. The 
main features of the TIMSS sample design that JRR incorporates in its repeated replication are 
the stratification of schools and the clustering of students within schools. This is done by defining 
jackknife sampling zones as pairs of successive schools according to the sampling frame to 
model the stratification and clustering from the national samples (see Chapter 3 for information 
on the TIMSS sample design). The repeated subsampling required by JRR is applied across 
the sampling zones. The remainder of this section describes the procedure that is followed 
in TIMSS. The reader is referred to Efron (1982), for example, for explanations of why the 
procedure outlined below leads to approximately unbiased estimates of the sampling variance. 

JRR sampling zones are constructed within explicit strata for each country or benchmarking 
participant. When schools are sampled, they are ordered within the explicit strata by additional 
implicit stratification variables and their measure of size. Based on this sorting, successively 
sampled schools are expected to have similar stratification attributes. When an explicit stratum 
has an odd number of sampled schools, either by design or because of nonresponding schools, 
the students in the lone school of the last sampling zone are divided randomly into groups, or 
according to classroom if more than one class is sampled, to make up two members (“quasi-
schools”) to calculate JRR standard errors. This results in each sampling zone consisting of 
two members—either two schools or two “quasi-schools.” 

In each country, a maximum of 125 zones are created, allowing for as many as 250 
participating schools to be assigned to unique JRR zones with two members each. When 
more than 250 schools are sampled, the additional schools are collapsed into the existing 
zones in order of selection. The randomization used in the resampling within sampling zones 
preserves the sampling variance measured in the original sampling zones after collapsing. 
Note that the JRR sampling zones may be constructed in a different manner under specific 
national conditions or sampling designs. Country-specific information on these differences 
for TIMSS 2023 is available in Chapter 9. Appendix 13A shows the school sample size and 
number of constructed JRR sampling zones, before collapsing, for the participating countries 
and benchmarking participants in TIMSS 2023. 

https://timss2023.org/methods/chapter-3
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For estimating the sampling variance, the JRR procedure draws two subsamples based on 
each sampling zone: one where the first school or quasi-school in the pair is included and the 
second is removed, and the other where the second school is included and the first is removed. 
When a school is removed from a sampling zone, the sampling weights of the students in the 
remaining school are doubled to make up for the omitted school. All students in the other 
sampling zones are included in both subsamples, and their sampling weights are unchanged. 
With this process applied in each sampling zone, the JRR procedure yields up to 250 replicate 
subsamples, each with its own set of replicate sampling weights to account for the successive 
removal of each school from the pair in any given sampling zone.

The process of creating replicate sampling weights for the replicate subsamples defines 
replicate factors khi as follows:

where W0j is the overall sampling weight of student j, and Whij is the resulting replicate sampling
weight of student j when school i from sampling zone h is included, and the other school in
the pair is removed.

Exhibit 13.1 illustrates the calculation of the replicate factors necessary to produce the 
replicate sampling weights. Within each sampling zone, each school or quasi-school is randomly 
assigned an indicator uhi, coded either 0 or 1, such that one school has a value of 0 and the
other a value of 1. This indicator determines how schools within each zone will be successively 
included and removed. When a school is removed from a zone, the replicate factor is set to 0, 
and the sampling weights of all students in that school are set to 0. When a school is included, 
the replicate factor is set to 2, and the sampling weights of all students in that school are 
doubled. The sampling weights of students in all the other sampling zones remain unchanged.

2 for students in school i of sampling zone h
0 for students in the other school of sampling zone h
1 for students in any other sampling zone

These replicate factors are used to compute the replicate sampling weights as follows:

W = k • Whij hi 0j

{khi=
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Exhibit 13.1: Construction of Replicate Factors Across Sampling Zones
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For example, sampling Zone 1 yields two sets of replicate sampling weights, hence the two 
columns for Zone 1. The first set has doubled sampling weights (k11 = 2) for the students in 
the first school (u11 = 0) of Zone 1, zeroed sampling weights (k12 = 0) for the students in the 
second school (u12 = 1) of Zone 1, and unchanged sampling weights (khi = 1) for all students 
in the other sampling zones, e.g., Zones 2 through 125. This is shown in the first Zone 1 
column. The second set of replicate sampling weights (shown in the second Zone 1 column) 
has zeroed sampling weights (k11 = 0) for the students in the first school (u11 = 0) of Zone 1, 
doubled sampling weights (k11 = 2) for the students in the second school (u12 = 1) of Zone 1, 
and unchanged sampling weights (khi = 1) for all students in the other sampling zones.

The process is repeated across all 125 possible sampling zones, generating up to 250 sets 
of replicate sampling weights. The replicate sampling weights are then used to estimate any 
statistic of interest up to 250 times. The variation across these JRR estimates is an estimate of 
the sampling variance.

Given a statistic t to be computed from a national sample, the formula used to estimate 
the sampling variance of that statistic, based on the JRR algorithm, is given by the following 
equation:

 
( )

h=1
hi

i=1
0

125 22

∑ ∑Var t = –1
2— 0tt )jrr (

 
(13.1)
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where the term t0 denotes the statistic of interest estimated with the unaltered overall student 
sampling weights W0j and the term thi denotes the same statistic computed using the set of 
replicate sampling weights Whij obtained from sampling zone h (h = 1, …, 125), where the 
i th school (1st or 2nd) in the zone is included and the other removed. Efron (1982) provides a 
mathematical proof of why the variance can be calculated based on these squared deviations 
of the thi from the total sample statistics in JRR-based resampling schemes.

The sampling variance estimated with the JRR method properly accounts for the variation 
arising from having sampled students using the TIMSS multistage stratified cluster sample 
design. Its square root estimates the standard error due to sampling for a statistic derived from 
variables other than those based on plausible values. Examples of such statistics include the 
mean age of students and the percentage of students with at least one parent with a university 
degree. When used for statistical inference, the degrees of freedom for this estimate may be 
determined using the modified Satterthwaite (1941) approach as provided by Johnson and 
Rust (1992) and discussed by Qian (1998). For consistency with previous cycles, TIMSS 2023 
uses an assumption of approximate normality, which was applied in prior cycles to simplify 
calculations.

Estimating Imputation Variance
Achievement estimates are based on observations of how students perform on a set of 
achievement items. Any estimate of a student variable, achievement, or self-report constructs 
based on a finite set of observed response variables is affected by measurement error. 
Responses to items provide an estimate of students’ proficiency or other student characteristics. 
The responses to these sets of items used to measure student characteristics are not constants 
but vary over time (students do not always give precisely the same responses) and across 
different sets of questions. 

Uncertainty about students’ proficiency is a function of the number of items administered 
and the interaction of the item characteristics and student proficiency, among other factors. 
Measurement error is typically larger when fewer items are involved, but some amount of 
measurement error would always be observed, even if a student would take all the assessment 
items. However, the entire item pool in any given TIMSS assessment cycle is far too extensive 
to be administered to any student. Therefore, TIMSS uses a matrix-sampling assessment 
design whereby each student is given a single test booklet containing only a portion of the 
entire assessment. The results from all students and booklets are then analyzed using item 
response theory (IRT) to provide initial estimates of achievement on the TIMSS reporting scale. 
An imputation model is then applied integrating the results of the IRT analysis with the relationship 
between contextual variables and achievement. This imputation model is a latent regression 
model described in Chapter 11 and is used to derive estimates of student performance in the form 
of plausible values. These plausible values are proficiency estimates that incorporate the portion 
of measurement uncertainty that can be quantified. Proficiency estimates have an associated 

https://timss2023.org/methods/chapter-11


 CHAPTER 13: STANDARD ERROR ESTIMATION  
 TIMSS 2023 TECHNICAL REPORT 13.6

2O 2 3

variability due to measurement error. TIMSS follows the customary procedure of imputing multiple 
plausible values for each student and using the variability among them as a measure of that 
uncertainty, known as imputation variance. Currently, five plausible values are used.

The general procedure for estimating the imputation variance when analyzing student 
achievement data follows the basic principle developed by Rubin (1987) of performing any 
statistical analysis once for each imputation and aggregating these multiple sets of results 
(Mislevy et al., 1992). Thus, in TIMSS for any given achievement-based statistic t, estimating 
that statistic from each plausible value yields five estimates tm, m = 1, …, 5, all computed using 
the overall student sampling weights W0j. The final estimate of that statistic, t0, is the average 
of these five estimates:

5

∑=
m 1=

1
5 m .t0t

The imputation variance of the statistic t0 is simply the variance of the five results from the 
plausible values, computed as follows:

Var 0t )(
5

∑=
m 1=

6
5

(
4

0tmt – )2

imp

where the factor 
6
5 is a correction factor necessary when using the multiple imputation 

methodology (Rubin, 1987). The total variance of the statistic t0 is calculated by adding the 
imputation variance to the sampling variance as follows:

 =0Var Vart ) Var+( 0t )(0t )(tot jrr imp  (13.2)

The sampling variance Varjrr(t0) for a statistic based on plausible values is the average of 
the sampling variances calculated with each of the five plausible values Varjrr(tm), m = 1, …, 
5, as follows:

1
5

5

∑=
m 1= mt( )Var Var0t )(jrr jrr

where
125 2

2Varjrr t m t m(t mhi) )= 1
2 h 1= i 1=
∑ ∑ –(

and tmhi is the appropriate JRR estimate for plausible value m and computed using the set of 
replicate sampling weights of sampling Zone h where school i is included. The square root of 
the total variance is the standard error estimate for any statistic based on plausible values, such 
as the average TIMSS mathematics achievement for girls, or the percentage of students at or 
above the TIMSS Advanced International Benchmark of mathematics achievement.
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Appendices 13B through 13E provide details on the standard errors for the TIMSS 2023 
proficiency estimates of participating countries and benchmarking entities in fourth-grade 
mathematics, fourth-grade science, eighth-grade mathematics, and eighth-grade science, 
respectively. The exhibits contained in each appendix report the JRR sampling variance, 
imputation variance, total variance, and the overall standard error for each participant’s mean 
proficiency estimates for the overall subject as well for the content and cognitive domain 
subscales and the environmental knowledge subscales for science. 

Estimating Standard Errors for International Averages
Some exhibits in the TIMSS International Results reports include international averages and their 
standard errors. For example, TIMSS 2023 Exhibit 1.1.2 reports the international average for the 
percentages of girls and boys and their fourth-grade mathematics achievement. International 
averages are computed using the data from participating countries included in the main table 
of the exhibit. Results from the benchmarking participants are not included in the estimation 
of international averages.

For any given statistic t0, its international average is given by

N

t intl t 0k= 1
N k 1 =

∑

where N is the number of countries contributing to the international average and t0k is the 
estimate of our statistic of interest for country k.

The total variance of the international average tintl is given by

 

N

2Vartot Var( intl (t 0k) )= 1
N k 1= tot∑t  (13.3)

where Vartot(t0k) is the total variance of our statistic of interest for country k. The standard error 
of the international average is the square root of the total variance. 

For statistics based on plausible values, the total variance includes the sampling and 
imputation variances, as given in equation (13.2) above. For statistics not based on plausible 
values, such as percentages, the total variance is based entirely on the sampling variance, as 
shown in equation (13.1) above. 

Estimating Standard Errors for Comparing Results from 
Independent Samples
Standard errors, along with providing a measure of uncertainty for TIMSS results, are also a 
necessary part of performing a null hypothesis significance test when comparing two or more 
estimates of population or subgroup averages. A basic objective of TIMSS is to provide fair and 
accurate comparisons of student achievement across assessment cycles. For example, TIMSS 

https://timss2023.org/results/grade-4-math-achievement-gender
https://timss2023.org/results/grade-4-math-achievement-trends
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2023 Exhibit 1.1.10 is one such example, showing fourth-grade mathematics trend results 
across the TIMSS assessment cycles. Additionally, the interactive TIMSS 2023 Exhibit 1.1.1 
can be used to perform pairwise comparisons across countries for fourth-grade mathematics 
achievement. All of these comparisons require the computation of a standard error for 
the difference between two estimates, which has an expected value of zero (indicating no 
difference).

TIMSS results are reported by way of a statistic such as a mean or percentage, and each 
statistic is accompanied by its standard error, computed using either equation (13.1) or equation 
(13.2), as appropriate. Results from different assessment cycles, or from different countries 
within the same cycle, are treated as independent samples, and computing the standard error 
of a difference is straightforward. 

When computing the difference between two TIMSS results tA and tB from independent 
samples, such as comparing the achievement of countries A and B, or comparing the 
achievement of a country between assessment cycles A and B, the standard error of that 
difference is given by

SE Var( A (t A) )= tot Var (t B)tott– tB +

or, more simply

2 2SE SE( A (t A) )= SE(t B)t – tB +

which can be stated as follows: the standard error of the difference between two independent 
estimates is the square root of the sum of their respective squared standard errors.

It should be noted that this approach to computing standard errors for comparing 
independent samples assumes the true variance in the two populations are the same, which 
may not always be the case. Moreover, TIMSS currently does not include estimates for the 
trend scale linking error in the standard error of the difference for comparing results between 
assessment cycles. TIMSS 2023 uses an approach consistent with previous cycles to simplify 
calculations.

Estimating Standard Errors for Comparing Results from 
Dependent Samples 
In the context of TIMSS, results from dependent samples are those statistics derived from 
the same national or benchmarking sample. The achievement difference between girls and 
boys, as shown, for example, in TIMSS 2023 Exhibit 1.1.2, is an example of results comparing 
two dependent samples. This dependence occurs because girls and boys are selected 
simultaneously from a shared sampling frame of schools and often classrooms. Attributes from 
girls and boys from the same school tend to be more similar compared to subgroups selected 
from different schools, thus resulting in a correlation that needs to be accounted for in the 

https://timss2023.org/results/grade-4-math-achievement-trends
https://timss2023.org/results/grade-4-math-achievement
https://timss2023.org/results/grade-4-math-achievement-gender
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computation of the standard error of their difference. In other words, rather than computing 
the error as if boys and girls came from two independent samples, the error of the difference 
is computed using the procedure for a paired-sample t-test where the error of the difference 
is the variance of the differences across all replicate subsamples. 

The difference between two statistics is itself a statistic. Therefore, the standard error of any 
difference between two dependent samples is computed in the same way as any other statistic, 
as was described earlier. The (up to) 250 sets of replicate weights produce 250 replicate 
estimates of the difference of interest and equations (13.1) and (13.2) apply, where thi and t0 
represent the differences between the point estimates for the two groups.

Estimating Standard Errors for Comparing Against International 
Average
Participating countries may be interested to compare their average achievement results to 
the international average achievement across TIMSS countries for that cycle. For example, 
the interactive feature in TIMSS 2023 Exhibit 1.1.1 can identify countries that had average 
mathematics achievement that was not statistically significantly different from the TIMSS 2023 
International Average.

When comparing a country’s result to the international average, TIMSS accounts for the fact 
that the country contributed to the international average and its standard error. To correct for 
this contribution, the standard error of the difference needs to be adjusted. The total variance 
of the difference tk – tintl, comparing country k to the international average for a statistic t, is 
given by

 Var ( k ) = N – 1 )t – tintltot Var ( kttot+Var ( ) tintltot
)( 2

–
N2

1
 (13.4)

where N is the number of countries contributing to the international average, Vartot(tintl) is the 
total variance of the international average as computed by equation (13.3), and Vartot(tk) is 
the total variance for country k as computed by equation (13.2) for results based on plausible 
values, or equation (13.1) for results not based on plausible values.

Equation (13.4) can be simplified and expressed in terms of standard errors as follows:

2 2SE SE( k (t intl) )= N – 2 SE(t k)t – tintl + N

where SE(tintl) is the standard error of the international average and SE(tk) is the standard error 
for country k.

https://timss2023.org/results/grade-4-math-achievement
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