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CHAPTER 11

TIMSS Achievement Scaling Methodology: 
Item Response Theory and Population 
Models

Ummugul Bezirhan
Matthias von Davier

Introduction
This chapter describes the statistical and psychometric methods used to analyze the 
achievement data collected in TIMSS. The chapter begins by introducing item response theory 
(IRT), a widely-used methodology in educational measurement and psychometrics for analyzing 
item response data. IRT provides a model-based foundation for test development, item analysis, 
scale linking, computerized adaptive testing, and many other applications. Moreover, its utility 
can be extended to analyzing a wide range of human-response data, such as patient feedback, 
psychological evaluation, consumer choice, and data from other disciplines.

The second part of the chapter discusses the integration of achievement data from the 
TIMSS mathematics and science items with contextual data from student questionnaires (and 
parent questionnaires at the fourth grade) and describes the statistical imputation model used 
for this purpose, following essentially the approach used by TIMSS since its inception in 1995. 
This model is a combination of IRT approaches and a regression-based approach that utilizes 
the context data as predictors for the derivation of a prior distribution of proficiency. Then, 
plausible values of student achievement are drawn from the resulting proficiency distribution 
for use in the analysis. It is important to emphasize that plausible values are not intended to be 
used as individual test scores. Instead, they are a tool for producing a useful database of valid 
and reliable information for reporting aggregated student proficiency and for secondary users 
of the assessment data.

This chapter provides references and information for further reading. Chapter 12 describes 
the application of the methods described here to TIMSS data for the 2023 assessment cycle.

https://timss2023.org/methods/chapter-12
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Modern Test Theory: Item Response Theory
IRT, originally described by Lord and Novick (1968), has become widespread in educational 
measurement due to its flexible framework for estimating proficiency scores from students’ 
responses to test items. Since its inception in 1995, TIMSS has implemented IRT, initially 
employing the Rasch model (Rasch, 1960; Adams, Wu, & Macaskill, 1997; von Davier, 2016), 
but later moving to more general IRT models (Lord & Novick, 1968; Yamamoto & Kulick, 2000) 
for the estimation of item parameters and proficiency scores. A comprehensive overview of 
recent modeling approaches and the application of IRT in IEA studies was given by von Davier 
et al. (2020).

One of the major goals and design principles of TIMSS, as well as other large-scale surveys 
of student achievement, is to provide valid comparisons across student populations based on 
broad coverage of the achievement domain. This typically requires ensuring a comprehensive 
coverage of the achievement domain through hundreds of items in the subject. However, given 
the limited testing time, only a portion of these items can be administered to any one student. 
In mathematics as well as in science, this translates into an assessment containing several 
hundred achievement items, while only a fraction can be administered to any one student 
given the available testing time (36 minutes per subject at fourth grade, 45 minutes per subject 
at eighth grade). To overcome this challenge, TIMSS uses an assessment design based on 
multi-matrix sampling or incomplete block designs (e.g., Mislevy et al. 1992). As described in 
TIMSS 2023 Assessment Design, these achievement items are arranged in blocks that are then 
assembled into student booklets that contain different (but systematically overlapping) sets of 
item blocks. Because each student receives only a fraction of the achievement items, statistical 
and psychometric methods are required to link these different booklets together so that student 
proficiency can be reported on a comparable numerical scale even though no student answers 
all of the assessment items.

IRT is well suited for handling this type of data collection design where not all students are 
tested on all items. Data collected with item blocks presented using incomplete block designs 
can be linked through IRT (e.g., von Davier et al., 2006; von Davier & Sinharay, 2013) and the 
assumption needed to enable making many test forms comparable can be described and tested 
formally (e.g., Fischer, 1981; Zermelo, 1929).

The mathematical notation in this chapter represents the item response variables on an 
assessment as xi, where the i = 1, …, I denote the item index. The set of responses to these 
items is (xv) = (xv1, …, xvi) for student v. By convention, in the case of dichotomously scored 
items worth one score point, we assume xvi = 1 denotes a correct response and xvi = 0 denotes 
an incorrect response. 

The achievement is assumed to be a function of an underlying latent proficiency variable, 
often in IRT denoted by θv, a real-valued variable. Then, the probability of the observed 
responses for a test taker of that proficiency is modeled as

https://timssandpirls.bc.edu/timss2023/frameworks/chapter-4.html
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	 	 (11.1)

where P(xvi | θv ; ζi) represents the probability of either correct or incorrect responses of a 
respondent with ability θv to an item i with item parameters ζi. To allow a more compact notation, 
we use

Equation (11.1) is a statistical model describing the probability of a set of observed responses 
(xv) = (xv1, …, xvi) as independent, conditional on the ability θv. This joint probability can be 
calculated as the product of the individual item probabilities, assuming local independence 
(described in a later section) of responses for a given student ability θv as the responses are 
assumed to depend only on a test taker’s proficiency, and no other variables.

The item-level probability model, P(xvi | θv ; ζi), is given by an IRT model that provides a 
formal mathematical description, an item function, describing how the probability of a correct 
response depends on the ability and the item parameters. One example of an item function is 
the inverse of the logistic function depicted in Exhibit 11.1.

Exhibit 11.1:	 The Logistic Function, a Fundamental Building Block of IRT
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The function depicted in Exhibit 11.1 is given by f(T) = exp(T)/[1 + exp(T)] = logit-1(T). 
With ζi=(ai,bi) and Tvi = ai(θv – bi) we can define
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P(xvi = 1| θv ; ζi) = logit -1(ai(θv – bi)).

Then, it can be shown that 

which is the model equation of the two-parameter logistic (2PL) IRT model. The two parameters 
are the a

i
, parameters that quantify the slope of the item function, and the bi, which parameterize 

the position of the item function relative to the person proficiency parameter θv. The 2PL IRT 
model is a very common model for analyzing binary response data, and it is one of the models 
used in TIMSS, as explained below.

Many IRT models used in educational measurement can be understood as relatively 
straightforward variants of the item function depicted in Exhibit 11.1. Among the most popular 
IRT models, the Rasch model (Rasch, 1960; von Davier, 2016) is an important special case, also 
called the one-parameter logistic (1PL) IRT model, where all assessment items are considered 
to contribute equally to the latent construct. In the Rasch model, all item slope parameters are 
assumed to be the same, so there is only one parameter per item, the bi. Why this and other 
more general approaches of IRT used in TIMSS are suitable choices for modeling assessment 
data can be seen as follows:

Thurstone (1925) discovered that the proportion of test-takers who can successfully perform 
different tasks is monotonically related to their age when analyzing test performance by age 
as an indicator of ability maturation along developmental stages. This relationship is illustrated 
in Exhibit 11.2 and closely resembles the inverse logistic function displayed in Exhibit 11.1. 
Furthermore, a similar pattern can be observed when measuring the performance by the total 
number of correct responses on a longer test (Lord, 1980). This led to the choice of the inverse 
logistic function as the basis for the item functions in IRT.

The probit and logit models are common parametric functions that fit these non-linear 
relationships with lower and upper asymptotes of zero and one, respectively (e.g., Cramer, 
2003). While the Rasch model specifies a single item parameter bi in the form of a negative 
intercept, more general IRT models can be defined that allow for variation of the trace lines in 
terms of slopes and asymptotes. 
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Exhibit 11.2:	 Relationship between Age and Success on Tasks that Inspired IRT 
Development
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Trace lines obtained by plotting percent correct against age from a series of tasks (Re-creation of Figure 5 in Thurstone, 1925).

TIMSS generally employs the two-parameter logistic (2PL) IRT model for items worth one 
score point and the generalized partial credit model (GPCM; Muraki, 1992) for items worth up 
to two score points. The three-parameter logistic (3PL) IRT model (Lord & Novick, 1968) is used 
for all multiple-choice items (or “single-selection” items) introduced in TIMSS 2019 or earlier 
cycles and continues to be applied for all multiple-choice items that cannot be fitted with the 
2PL model. 

The 3PL model adds a third parameter to the item function, which acts as a lower asymptote. 
This lower asymptote is denoted by ci and quantifies the theoretical probability of a correct 
response for respondents with the lowest possible proficiency levels. 

The 3PL IRT model (Birnbaum, 1968) is given by 

	 	 (11.2)

where ci denotes the pseudo guessing parameter—which, when set to 0, yields the 2PL, as 
before, bi denotes the item difficulty parameter, and ai is the slope parameter. 

A model frequently used for polytomous ordinal items (items worth up to two points) is the 
GPCM (Muraki, 1992), given by

	 	 (11.3)
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assuming a response variable with mi + 1 ordered categories. The threshold parameters are 
often split into a location and normalized step parameters, bix = δi – τix, with ∑τix = 0 (e.g. 
Muraki, 1992).

The proficiency variable θv is sometimes assumed to be normally distributed, that is, 
θv ~ N(μ, σ) for convenience. This can be a useful assumption but is not a requirement and may 
not be an appropriate assumption if a population consists of multiple subpopulations with distinct 
achievement distributions. In operational scaling applied in national and international large-
scale assessments, assuming a joint normal distribution for all countries is often inappropriate. 
Countries differ not only in average and variability of achievement but also in the shape of their 
achievement distributions: Student populations may consist of distinct subpopulations, which 
leads to asymmetric shapes or heavy tails that are not well represented by a normal distribution. 
The normality constraint is needed for latent regression models (von Davier et al., 2006), but for 
item calibration, it can be relaxed, and other types of distributions may be used (Haberman et 
al., 2008; von Davier & Sinharay, 2013; von Davier et al., 2006; von Davier & Yamamoto, 2004; 
Xu & Jia, 2011; Xu & von Davier, 2008). In TIMSS, the latent distribution is estimated using the 
empirical histogram method (Bock & Aitkin, 1981; Mislevy, 1984; Woods, 2007), just like it is 
done in other IEA studies including PIRLS, as well as NAEP, PISA, and PIAAC (e.g., von Davier 
& Sinharay, 2013; Xu & Jia, 2011).

The samples of students who participate in each cycle of TIMSS come from diverse 
populations with varying characteristics. Consequently, the calibration procedure must account 
for the possibility of systematic variations in ability distributions from different subpopulations 
while assuming that the items are comparable across participating countries. A multiple-
group IRT model using country groups is employed to conduct the item calibration. The item 
parameters are constrained to be equal across groups, with flexibility to allow a unique ability 
distribution in each country. Minimizing constraints on ability distributions is grounded in best 
practices used in large-scale assessment programs.

When more than one ability is reported, for example, mathematics and science, or content 
and cognitive subscales of these overall domains, they are represented in a d-dimensional 
vector θv = (θv1, …, θvd). In this case, one may assume a multivariate normal distribution, 
θv ~ N(μ, Σ). For the IRT models used in TIMSS, these d-dimensions are assumed to be 
measured by non-overlapping sets of items so that 

represents d sets of I1 to Id responses, respectively. A d-dimensional version of the model in 
(11.1) is given by

	 	 (11.4)
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with item-level IRT models (11.2) or (11.3) plugged in for P(xvik
 | θvk ; ζik) as appropriate. 

The model given in (11.4) is a multidimensional IRT model for items that each measure one 
dimension, but across subtests show between-item multidimensionality (Adams, Wilson, & Wu, 
1997; Adams & Wu, 2007). 

Central Assumptions of IRT Models
As a mathematical model, IRT depends on a set of assumptions about the data to which the 
model applies. These assumptions specify the relationships between observable and non-
observable (latent) constructs within the model, establishing the foundational conditions for 
its application. Meeting these assumptions ensures that proficiency estimates are comparable 
across different assessment instruments and participating countries over time and are 
generalizable to the broader domains outlined in the assessment frameworks beyond the limited 
tasks each student received.

IRT models describe the probability of a correct response, given examinees’ proficiency 
θ and several item-specific parameters such as the discrimination (a), difficulty (b), and other 
characteristics described above. However, proficiency and item parameters are unknown 
in actual practice and must be estimated from the data, which typically consists of scored 
responses to a limited number of assessment items. 

For large-scale assessments like TIMSS, IRT provides a structured model that applies to 
the entire assessment domain, delineated in assessment frameworks that describe the types 
of performances on topics viewed as representing the domain. The underlying assumptions of 
IRT support this endeavor by allowing for the estimation of proficiency levels on assessment 
tasks within the specified domain in a well-defined and scientifically testable way. 

Unidimensionality
TIMSS measures student achievement through a set of items students receive. Let I denote 
the number of items and let the observed response variables be denoted by x = (x1, …, xI). 
Unidimensionality refers to the idea that a single underlying proficiency is measured by all items 
in an assessment domain so that probabilities of responses to each item can be described by a 
single quantity, regardless of the specific items a student receives from the entire assessment 
domain. 

Let Piv and Pjv denote the probability of person v scoring 1 any two of the items, for example, 
items i and j. If the assumption of unidimensionality holds, there is a single real-valued available 
θv with

and
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for any pair of items i, j on the test. These identities imply that the response probabilities only 
depend on the person’s ability θv, which can be expressed as a single real-valued variable, and 
no other characteristics of a person. However, unidimensionality only holds if the test items are 
designed to assess the same assessment domain and if test developers follow the assessment 
framework’s content specifications. If the items assess seemingly unrelated skills, such as 
gross motor skills, reading, or science in one set of items, and mathematics in another set of 
items, two or more proficiency scales may be necessary. However, a unidimensional proficiency 
may suffice if the domains are closely related and require knowledge, for example, of different 
subdomains within overall mathematics, such as algebra and geometry.

Population Independence and Local Independence
The assumption of population independence states that the likelihood of a student answering 
an item correctly does not depend on their membership to a particular group or demographic. 
In TIMSS, this assumption is critical for making valid inferences across different countries and 
within countries for various student groups. Formally, population independence holds if

for any contextual variable g. Additionally, this independence also holds for groups defined by 
performance on xj on items j < i that precede the current item response xi. The response to a 
preceding item can also be considered a grouping variable, as it splits the sample into those 
that produced a correct response and those that did not, in the simplest case. Applying the 
assumption of population independence yields

Based on this population independence assumption, the joint probability of observing a 
series of responses, given the examinees’ proficiency level θ, can be written as the product 
of the individual item-level probabilities. This is known as the local independence assumption 
and takes the form

.

Local independence is a technical assumption, but it can be better understood when 
considering the following: The proficiency variable intended to be measured cannot be directly 
observed and must instead be inferred from observable responses that are assumed to relate to 
this variable. The assumptions of population and local independence facilitate these inferences 
by postulating that once a respondent’s proficiency level is known, their responses will be 
independent of each other and from other variables. That is, knowing whether a respondent 
answered the previous question correctly does not help predict their next response, provided 
the respondent’s proficiency level θ is known.
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According to this assumption, if the model fits the data and only one proficiency is deemed 
“responsible” for the probability of giving correct responses, then no other variables, such as 
the language of the assessment or those related to other student attributes, will play a role in 
predicting a respondent’s answer to the next item. The assumptions of local and population 
independence encapsulate the goal that only one variable needs to be considered and that 
estimates of this variable will fully represent the available information about proficiency.

Monotonicity of Item-Proficiency Regressions
The (strict) monotonicity of item functions is a crucial assumption in IRT models used for the 
achievement data. As shown in Exhibit 11.1, the Rasch and the 2PL and GPCM IRT models 
assume that the probability of a correct response increases with increasing proficiency. This is 
represented by the inequality,

for all items i. This assumption ensures that proficiency affects the probability of success on 
the items the students receive, whereas higher proficiency levels lead to a higher probability of 
success on each item in the achievement domain. This is also reflected in the strict monotonic 
relationship between the expected achievement scores and proficiency θ:

	 	 (11.5)

Equation (11.5) shows that a person with a higher skill level θw, compared to a person 
with a lower skill level θv, will obtain, in terms of expected score E(S|θw), on average, a larger 
number of correct responses. This monotonicity ensures that the items and test takers are 
ranked systematically, where a higher proficiency level is associated with higher expected 
achievement—a larger expected number of observed correct responses—for any given item 
or item block measuring the same domain in an assessment booklet.

The foundations for IRT and other latent variable models are based on the aforementioned 
assumptions. However, it is worth noting that these assumptions can be relaxed to accommodate 
specific characteristics of the data collection or assessment design (e.g., Thissen et al., 1989). 
Models that have been described in this chapter are suitable for achievement data, and the 
same or variations of these models are used for the analysis of questionnaire data (as described 
in Chapter 15). 

https://timss2023.org/methods/chapter-15
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Population Models Integrating Achievement Data and Context 
Information
TIMSS employs a population model to estimate distributions of proficiencies based on the 
likelihood function of an IRT model, as introduced in the previous section of this chapter, and a 
latent regression of the proficiency on contextual data (e.g. Mislevy, 1984; Mislevy & Sheehan, 
1987; von Davier et al., 2006; von Davier et al., 2009). This model is designed to impute 
the unobserved proficiency distribution, aiming to obtain unbiased group-level proficiency 
distributions. To achieve this, the model requires the estimation of an IRT measurement model, 
which provides information on how responses to assessment items depend on the latent 
proficiency variable. The latent regression component provides information on how background 
information is related to achievement and is used to improve estimates by borrowing information 
through similarities of test takers with respect to contextual variables and the way these relate 
to achievement. The population model is estimated separately for each country. In the case of 
TIMSS, multiple imputations–five plausible values (PVs)–representing the proficiency variable 
are drawn from the resulting posterior distribution for each respondent in each domain. It should 
be noted that PVs are not individual test scores in the traditional sense. They should only be 
used for analyses at the group level using the procedures described in this report and available, 
for example, through the IEA IDB Analyzer.

Population models are high-dimensional imputation models that incorporate an extensive 
set of contextual variables in the latent regression to ensure the inclusion of any essential 
information collected with the context questionnaires (von Davier et al., 2006; von Davier et al., 
2009; von Davier & Sinharay, 2013). Before estimating the latent regression model, a principal 
component analysis (PCA) is conducted on the student context variables to create orthogonal 
variables and, therefore, eliminate collinearity and then identify a smaller number of principal 
components that account for most of the variation. To avoid overspecification of the conditioning 
model, TIMSS selects principal components for each country such that 90% of the common 
variance is explained or the number of components is no more than 5% of the unweighted 
student sample size, whichever leads to fewer principal components.

Estimating proficiency involves combining data from the context questionnaires with 
the responses obtained from the achievement items. For each respondent n, the complete 
observed data is expressed as dn = (xn1, …, xnI, gn, zn1, …, znB), where zn1, …, znB represents 
the context information in the form of principal components; the xn1, …, xnI represent the 
answers to the achievement items, and gn represents the country or population the respondent 
was sampled from. 

Proficiency estimation using IRT models can use proficiency distributions in the population 
of interest. By incorporating contextual data, a population model can specify a second-level 
model that predicts the distribution of proficiency as a function of contextual variables. The 
conditional expectation in this model is given by

https://www.iea.nl/data-tools/tools#spy-para-308
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	 	 (11.6)

This expectation utilizes available information on how context variables relate to proficiency. 
The distribution of the proficiency variable is assumed to be normal around this conditional 
expectation, namely θn ~ N(μn, σ). 

Together with the likelihood of the responses expressed by the IRT model, this provides a 
model for the expected distribution of proficiency given the context data zn1, …, znB and the 
responses to the achievement items. In simpler terms, the model assumes that the posterior 
distribution of proficiency depends on the observed responses to the achievement items 
as well as the context variables. Given the amount of contextual data is much larger than 
the number of countries typically participating in an assessment, the added value of using a 
model that includes contextual information for every test taker is considerable. Therefore, if 
context variables are selected so that correlations with proficiency are likely, one obtains a 
distribution around the expected value (11.6) that is noticeably more accurate than a country-
level distribution of proficiency.

This approach can be described as a multiple (latent) regression model that regresses 
the latent proficiency variable on background data collected in context questionnaires. The 
regression estimation is done separately for each country, as context information cannot be 
assumed to have the same regression effects across participating countries. Parents’ highest 
level of education, for example, is well known as a strong predictor of student performance. 
Still, this association can be moderated by other factors at the level of educational systems, so 
in some countries it may be stronger than in others.

Multiple approaches can be used to estimate the latent regression parameters. In large-scale 
assessments like TIMSS, the latent trait (proficiency) is determined through the IRT models 
estimated across countries in a previous step. Then the (latent) regression model is estimated 
treating the item parameters from the previous IRT estimations as fixed quantities. Several 
chapters and articles have discussed this methodology in detail (e.g., Mislevy & Sheehan, 1987; 
Thomas, 1993; von Davier et al., 2006; von Davier & Sinharay, 2013).

Group-Level Proficiency Distributions and Plausible Values
The psychometric methods outlined earlier aim to generate a database that provides reliable 
and comparable information for reporting student proficiency and for those who use the 
TIMSS assessment data for secondary analysis. This information takes the shape of proficiency 
estimates in the form of plausible values for all respondents based on their responses to the 
assessment items and their answers to the context questionnaires. Integrating the IRT model 
described in the first part of this chapter with the regression model introduced above, we can 
estimate the probability of the responses, conditional on context information, as

	 .	 (11.7)
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Equation (11.7) provides the basis for drawing the imputations of proficiency commonly 
known as plausible values (Mislevy, 1991). 

The model given in (11.7) enables inferences about the posterior distribution of the 
proficiency θ, given both the assessment items xi, …, xI and the context information z1, …, zB. 
The posterior distribution of the proficiency given the observed data can be written as

.

An estimate of where a respondent n is most likely located on the proficiency dimension 
can be obtained by 

The posterior variance, which provides a measure of uncertainty around this expectation, 
is calculated as follows:

Estimates of the mean and variance are used to define a posterior proficiency distribution. A 
set of plausible values is then drawn from this distribution for each student. Plausible values are 
the basis for all reporting of proficiency data in TIMSS, allowing reliable group-level comparisons 
because they are based not only on students’ answers to the TIMSS items but also reflect how 
contextual information is related to achievement.

It should be emphasized that in each country, the correlation between contextual information 
and proficiency is estimated separately to avoid bias or inaccurate attribution that could have 
an impact on the results. Although the expected value of average country-level proficiency 
remains the same with or without context information, incorporating such information becomes 
advantageous when conducting group-level comparisons. Research has shown that including 
contextual information in a population model substantially reduces potential biases in group-
level comparisons through both analytical and simulation approaches (von Davier et al., 2009).

The plausible values used in TIMSS and other large-scale assessments are random draws 
from a conditional normal distribution

that are based on response data xn and context information zn estimated using a group-specific 
model for each country g. Including context information allows a more accurate estimation of 
student proficiency and helps eliminate bias in group-level comparisons for those grouping 
variables included in the model (e.g. Little & Rubin, 1987; Mislevy 1991; Mislevy & Sheehan, 
1987; von Davier et al., 2009). 
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One consequence of this approach is worth noting: Two respondents with the same item 
responses but different context information will likely receive a different predicted distribution 
of their corresponding latent trait and, thus, a different set of imputed proficiency estimates. 
While this may seem counterintuitive, it is important to keep in mind that plausible values are 
not intended to be used as individual test scores. Rather, they are a tool for producing a useful 
database of valid and reliable information for reporting aggregated student proficiency and for 
secondary users of the assessment data. They facilitate group-level comparisons, which is the 
main goal of internationally and nationally comparable student surveys. 

Linear Transformations of Proficiency Scores
To produce the TIMSS assessment results for a given cycle on the existing TIMSS achievement 
scale, the plausible values need to be transformed onto the TIMSS reporting metric. This 
process involves performing a series of linear transformations determined using data across all 
trend countries contributing to the scaling, which incorporates data from the current cycle and 
the data from the previous cycle (for example, TIMSS 2023 and TIMSS 2019). The first linear 
transformation is a component of concurrent calibration, which aligns the re-estimated ability 
distribution of the previous TIMSS cycle with the published ability distribution of the previous 
TIMSS cycle. Using this transformation, all results for a given TIMSS cycle can be put on the 
TIMSS trend scale. 

These linear transformations are given by

where PVik is the plausible value i of scale k before transformation, PV ik is the plausible value 
i of scale k after transformation, and Aik and Bik are the linear transformation constants.

Transformation constants are obtained by first computing the international means (μik) 
and standard deviations (σik) of the plausible values for the overall mathematics and science 
scales using the published plausible values of the previous cycle based on the previous cycle 
item calibration. Next, the means (μ ik) and standard deviations (σ ik) are calculated using the 
rescaled plausible values of the previous cycle based on the current cycle calibration model. 
From these calculations, the linear transformation constants are defined as:

	 	 (11.8)

and

	 	 (11.9)

The transformation constants in (11.8) and (11.9) are applied separately for overall 
mathematics and science at each grade. The same transformations used for the overall subjects 
are applied for their respective content and cognitive subscales. 
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